1. (20 points) Sketch the graph of $f(x)=x e^{x}$, labeling all relevant details.
2. (20 points) Consider the following integrals:

$$
\begin{array}{ll}
A=\int_{1}^{4} 2 x \ln x d x & B=\int_{0}^{3} 2 x \ln (x+1) d x \\
C=\int_{1}^{4} 2(x-1) \ln x d x & D=\int_{0}^{9} \ln (\sqrt{x}+1) d x
\end{array}
$$

Which of these integrals are equal to each other? Explain.
3. (10 points) Suppose the coefficients of the cubic polynomial $P(x)=a+b x+c x^{2}+d x^{3}$ satisfy $a+\frac{b}{2}+\frac{c}{3}+\frac{d}{4}=0$. Show that $P(x)=0$ has a root between 0 and 1 .
Hint: What is the average value of P on $[0,1]$?
4. (20 points) Find the volume of the solid generated by rotating the region bounded by the given curves around the specified axis.
(a) $y=x^{3}, y=0, x=1 ; \quad$ about $x=2$
(b) $y=1 / x, x=1, x=2, y=0 ; \quad$ about the x-axis
5. (15 points) Evaluate the indefinite integral.
(a) $\int \frac{x^{3}}{1+x^{4}} d x$
(b) $\int \tan x \ln (\cos (x)) d x$
(c) $\int\left(\frac{1-x}{x}\right)^{2} d x$
6. (10 points) Find $f^{\prime}(x)$ if $f(x)=\int_{\sqrt{x}}^{x} \frac{e^{t}}{t} d t$.
7. (10 points) Prove $\frac{1}{e} \leq \int_{0}^{1} e^{-x^{2}} d x \leq 1$.
8. (15 points) Use a Riemann sum to compute $\int_{0}^{1} x^{2} d x$.

Hint: You may find it useful to know $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
9. (10 points) We say that two curves are orthogonal if their tangent lines are perpendicular at each point where the curves intersect. Show that $y=c x^{2}$ and $x^{2}+2 y^{2}=k$ are orthogonal for any c and any $k>0$.
Hint: Two lines are perpendicular if the product of their slopes is -1 .
10. (10 points) Use one iteration of Newton's method to approximate $\sqrt{8}$ using the starting approximation $x_{1}=3$.
11. (10 points) Find f given that $f^{\prime \prime}(x)=\sin x, f(0)=1$, and $f^{\prime}(0)=0$.

